In Vivo Active Drug Uptake and Efflux at the Blood-Brain Barrier: With Focus on Drug Transport Interactions

نویسنده

  • MUHAMMAD WAQAS SADIQ
چکیده

Sadiq, M. W. 2012. In Vivo Active Drug Uptake and Efflux at the Blood-Brain Barrier: With Focus on Drug Transport Interactions. Acta Universitatis Upsaliensis. Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Pharmacy 165. 50 pp. Uppsala. ISBN 978-91-554-8472-9. The blood-brain barrier (BBB) controls the movement of substances into and out of the brain. The tight junctions between endothelial cells and energy dependent transporters in the BBB influence rate and extent of drug distribution to the brain. The aim of this thesis was to study different methodological and pharmacokinetic aspects of drug transport at the BBB by characterizing possible active uptake and drug-drug interactions. Therefore, advanced tools for data acquisition and analysis were applied. The role of BBB transport in early drug development, with particular emphasis on in vitro-in vivo comparisons and species differences, was also investigated. Microdialysis in rats was used to study the BBB pharmacokinetics of oxymorphone, diphenhydramine (DPHM), oxycodone and morphine. Oxymorphone, DPHM and verapamil were all found to be actively taken up at the BBB, with brain to blood unbound drug ratios of 2, 5 and 2, respectively. The effect profile for oxycodone was successfully described using the modified M3 method for censored observations. In vitro experiments indicated a competitive interaction between DPHM and oxycodone on active uptake transport to the brain. No such interaction was observed in vivo due to much lower unbound concentrations achieved, compared with the in vitro Ki values. Active uptake of morphine at the BBB was not demonstrated even at very low concentrations as it was not possible to separate the active uptake transport process from active efflux by decreasing the morphine concentration. Mice carrying the human P-gp gene (hMDR1) were used to evaluate possible species differences in P-gp function. Differences were evident between the hMDR1 and normal mice in BBB penetration of various P-gp substrates and in the effect of blockers on P-gp function. Quantitative measurements of P-gp expression levels at the BBB and a comparison with human data are crucial for the future use of the hMDR1 model. In conclusion, this thesis reports active uptake of oxymorphone, DPHM and verapamil at the BBB. In vivo interaction of DPHM and oxycodone at the BBB was found not to be significant at therapeutic drug concentrations. Furthermore species differences were found between human and mouse P-gp function at the BBB.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The role of efflux and uptake transporters in [N-{3-chloro-4-[(3-fluorobenzyl)oxy]phenyl}-6-[5-({[2-(methylsulfonyl)ethyl]amino}methyl)-2-furyl]-4-quinazolinamine (GW572016, lapatinib) disposition and drug interactions.

Lapatinib [N-{3-chloro-4-[(3-fluorobenzyl)oxy]phenyl}-6-[5-({[2-(methylsulfonyl)ethyl]amino}methyl)-2-furyl]-4-quinazolinamine, GW572016, Tykerb] is a tyrosine kinase inhibitor approved for use in combination with capecitabine to treat advanced or metastatic breast cancers overexpressing HER2 (ErbB2). In this work we investigated the role of efflux and uptake transporters in lapatinib dispositi...

متن کامل

Selective brain to blood efflux transport of para-aminohippuric acid across the blood-brain barrier: in vivo evidence by use of the brain efflux index method.

Efflux transport of para-aminohippuric acid (PAH) across the blood-brain barrier (BBB) has been demonstrated by use of the brain efflux index (BEI) method. PAH was eliminated from the ipsilateral cerebrum extensively with an apparent efflux rate constant of 0.0587 (min-1) after microinjection into a cerebral cortex region termed Par2. This efflux transport showed a saturation with the Michaelis...

متن کامل

Transporters and drug-drug interactions: important determinants of drug disposition and effects.

Uptake and efflux transporters determine plasma and tissue concentrations of a broad variety of drugs. They are localized in organs such as small intestine, liver, and kidney, which are critical for drug absorption and elimination. Moreover, they can be found in important blood-tissue barriers such as the blood-brain barrier. Inhibition or induction of drug transporters by coadministered drugs ...

متن کامل

Drug-Drug Interactions: Influence of verapamil on the pharmacokinetics of sitagliptin in rats and Ex vivo models

P-glycoprotein (P-gp) and cytochrome P450 3A4 (CYP3A4) play a significant role in the disposition and elimination of drugs. The objective of this study was to investigate the mechanism underlying the interaction between sitagliptin (substrate of P-gp and CYP3A4) and verapamil (known modulator of P-gp and CYP3A4) using in vivo, ex vivo and in situ models. Rats were treated with sitagliptin (10 m...

متن کامل

Targeting regulation of ABc Transporters at the Blood-Brain Barrier to improve Pharmacotherapy of cNs Disorders

The blood-brain barrier is the capillary endothelium between blood and brain that controls what goes in and comes out of the cNs. one major factor contributing to barrier function is a group of ATP-binding cassette (ABC) drug efflux transporters that restrict brain uptake of xenobiotics including a large number of cNs therapeutics. recent research has focused on the regulation of these transpor...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012